Poster Session:
B
Presenter:
Zheng Cao
Abstract:
As dental implants have become the standard of care for tooth replacement, the number of patients affected by pre-implant diseases (PIDs) is increasing. These diseases are characterized by the inflammation of the soft tissue surrounding the implants, infection and bone loss around the implants. Since implant placements continue increasing, it is predicted that PIDs will become one of the most significant dental diseases of the future. In the current study, we aimed to engineer novel antimicrobial and osteoinductive hydrogels for treatment of PIDs. The engineered hydrogels are composed of gelatin methacryloyl (GelMA), osteoinductive silicate nanoparticles (SN) and antimicrobial peptide (AMP). The composite hydrogels could be rapidly crosslinked in situ using LED dental curing light and exhibited high in vitro cytocompatibility, osteogenic differentiation as well as remarkable antimicrobial activity against Porphyromonas gingivalis, a pathogenic bacterium found in PIDs. Furthermore, our in vivo studies showed that the engineered hydrogels could effectively seal calvarial bone defects in mice for up to 42 days and induce bone regeneration. Overall, our results suggest that the engineered antimicrobial and osteoinductive hydrogels can be used an effective strategy for treatment of PIDs.